Synthesis and DNA Cleavage Studies of 2,6-Dimethoxyhydroquinone-3-Mercaptoacetic Acid Conjugates

Yu Fei SONG, Pin YANG*
Institute of Molecular Science, Shanxi University, Taiyuan 030006

Abstract

In an effort to investigate the use of short peptide chains as carriers of new anti-tumor agents, we synthesized four tripeptide-cytotoxic agent conjugates: DMQ-MA-Lys(DMQ-MA)-Phe -Arg-Ome, DMQ-MA-Lys(DMQ-MA)-Ile-Arg-Ome, DMQ-MA-Lys(DMQ-MA)-Val-Arg-Ome, DMQ-MA-Lys(DMQ-MA)-Lys(Cbz)-Arg-Ome. The cytotoxic agent conjugated to the N -terminal and the $\bar{\xi}$-amino group of Lysine of the tripeptide is 2,6-dimethoxyhydroquinone-3mercaptoacetic acid (DMQ-MA). The tripeptides were synthesized by coupling protected amino acid residues according to Pfp/DCC methods (Pfp: pentafluorophenol, DCC:N,N'-dicyclohexylcarbodiimide) in solution. Agarose gel electrophoresis showed that these compounds can cleave supercoiled DNA into open-circular form in drug concentration as low as $4-50 \mu \mathrm{M}$ without $\mathrm{H}_{2} \mathrm{O}_{2}$ and UV irradiation. Further studies on their cytotoxicity for these conjugates are ongoing.

Keywords: 2,6-Dimethoxyhydroquinone-3-mercaptoacetic acid, tripeptide, cleavage, pBR322 DNA.

In previous paper and work, we reported the synthesis and cytotoxicity studies of a novel series of short chain peptide conjugates of the cytotoxic agent 2, 6-dimethoxyhydro -quinone-3-mercaptoacetic acid 1 (DMQ-MA). The DMQ-MA is a derivative of 2,6-dimethoxybenzoquinone, which is a natural product of fermented wheat germ and found to have a wide spectrum of cytotoxicity against various tumor cell lines under the synergistic activation of L-ascorbic acid $\left(\mathrm{AH}_{2}\right)^{2,3}$. Compared with DMQ, DMQ-MA has the moderate water solubility $\left(27^{\circ} \mathrm{C}\right.$, DMQ $24 \mathrm{mg} / 100 \mathrm{~mL}$, DMQ-MA $\left.500 \mathrm{mg} / 100 \mathrm{~mL}\right)$ and low cytotoxicity.

Using high molecular weight compounds as drug carriers to target point is an active research field. But it is limited by the high toxicity of high molecular weight carriers to host cells ${ }^{4}$. Previous studies showed that most of the amino-acid-DMQ-MA conjugates possess higher cytotoxicity index than the parent DMQ-MA ${ }^{5}$ and these tripeptide-DMQ-MA conjugates are anticipated to be active in their conjugated form ${ }^{6}$.

Experimental

All of the protected amino acids were purchased from Sigma Chemical Co. Medium pressure column chromatography was performed using Merck 230-400 mesh silica gel. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} were purified before use. TLC system was performed on Merck silica gel 60 on aluminum sheets. Low-resolution mass spectra were taken from JEOL

JM-HX 110 instrument and MA SPEC System operating in the FAB mode. Elemental analysis was performed on Perkin-Elmer 240c instrument. Plasmid pBR322 DNA, calf thymus DNA and Tris were purchased from Beijing Sino-American Biotechnology Company. The electrophoresis experiments were carried out on a set of electrophoresis systems by using TAE buffer ($\mathrm{pH}=7.2,50 \mathrm{mmol} / \mathrm{L}$ Tris acetate, $20 \mathrm{mmol} / \mathrm{L}$ sodium acetate and $10 \mathrm{mmol} / \mathrm{L}$ sodium chloride) and the gel was stained with ethidium bromide for 20 min after electrophoresis. Images were analyzed on Complete Gel Documenta-tion and analysis system GDS 8000.

DMQ, Boc-Lys(Boc) and DMQ-MA were synthesized in Prof L.Sheh's Lab according to the literature [1], [7] and his US Patent.

Boc-Lys(Cbz)-Arg-Ome 1a: N_{α}-Boc- N_{ξ}-Cbz-Lysine hydrochloride ($0.5 \mathrm{~g}, 1.315$ $\mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with $\operatorname{Pfp}(0.363 \mathrm{~g}, 1.97 \mathrm{mmol})$ in ice bath for 15 min and then $\mathrm{DCC}(0.27 \mathrm{~g}, 1.315 \mathrm{mmol})$ was added, stirred further at $0^{\circ} \mathrm{C}$ for 15 min , and then stirred at room temperature for 2 hours, filtered and the solvent was removed in vacuo. Arg-Ome ($0.344 \mathrm{~g}, 1.35 \mathrm{mmol}$) in 2 mL of DMF was added, adjusted $\mathrm{pH}=7.0$ with DIEA (N, N-diisopropylethylamine), reacted for 3.5 hours at room temperature, distilled under reduced pressure and evaporated to give a white solid, which was purified by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \%, 2-10 \%, 11 \% \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 100 \mathrm{~mL}$ respectively. The solvents were evaporated to get a white solid. $\mathrm{Rf}=0.54\left(\mathrm{CH}_{3} \mathrm{OH}\right.$: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=15: 85$).

Boc-Phe-Arg-Ome 2a, Boc-Ile-Arg-Ome 3a, and Boc-Val-Arg-Ome 4a were synthesized in a similar method as for 1 a .

Table 1 Data of elemental analysis, MS and yields for compounds 1a-4a

	Elemental Analysis				
Compounds	C \%	H \%	N \%	$\left[\mathrm{MH}^{+}\right]$	Yields $\%$
1a	$56.73(56.92)$	$7.64(7.50)$	$15.27(15.18)$	551	76
2a	$57.93(58.15)$	$7.58(7.66)$	$16.09(16.46)$	436	71
3a	$53.86(53.97)$	$8.73(8.92)$	$17.46(17.11)$	402	75
4a	$52.71(52.85)$	$8.53(8.12)$	$18.09(18.43)$	388	68
() represents the Found data					

Boc-Lys(Boc)-Lys(Cbz)-Arg-Ome 1b: 1a ($0.217 \mathrm{~g}, 0.4 \mathrm{mmol}$) in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with 2 mL of trifluoroacetic acid (TFA) for 1 hour. The solvents were removed in vacuo, and the residue was the TFA salt of $\mathbf{1 a}$. Boc-Lys(Boc) ($0.14 \mathrm{~g}, 0.4$ $\mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $\operatorname{Pfp}(0.11 \mathrm{~g}, 0.6 \mathrm{mmol})$ in ice bath for 15 min , DCC $(0.09 \mathrm{~g}, 0.4 \mathrm{mmol})$ was added, continued to react at $0^{\circ} \mathrm{C}$ for 15 min and then at room temperature for 90 min . The reaction mixture was added to the TFA salt of 1a, and DIEA was added to adjust the pH to 7.0 . After 120 min , the reaction mixture was filtered, and the filtrate was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with citric acid $(10 \%, 30$ $\mathrm{mL})$, saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and water (20 mL) successively, dried over MgSO_{4} and evaporated in vacuo to give the crude solid. It was purified with silica gel chromatography and eluted stepwise with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \%, 2-12 \%, 15 \% \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the tripeptide as a white solid. $\mathrm{Rf}=0.57\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 80\right)$.

Boc-Lys(Boc)-Phe-Arg-Ome 2b, Boc-Lys(Boc)-Ile-Arg-Ome 3b, and Boc-Lys(Boc)
-Val-Arg-Ome 4b were synthesized in a similar way as for $\mathbf{1 b}$.
Table 2 Data of elemental analysis, MS and yields for compounds 1b-4b

Compounds	C\%	Elemental Analysis	[\mathrm{MH}^{+}]{}	yields\%	
	$57.07(57.32)$	$7.97(7.62)$		$14.40(14.59)$	779
2b	$57.92(58.31)$	$7.99(8.21)$	$14.78(14.53)$	664	66
3b	$55.32(55.71)$	$8.74(8.33)$	$15.58(15.66)$	630	67
4b	$54.63(54.32)$	$8.62(8.21)$	$15.93(16.27)$	616	63
() represents the Found data					

DMQ-MA-Lys(DMQ-MA)-Lys(Cbz)-Arg-Ome 1c: 1b ($0.44 \mathrm{~g}, 0.565 \mathrm{mmol}$) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with 2 mL of TFA for 1 hour and the solvents were removed in vacuo. DMQ-MA ($0.44 \mathrm{~g}, 1.68 \mathrm{mmol})$ in 10 mL of CHCl_{3} was stirred with $\operatorname{Pfp}(0.467 \mathrm{~g}$, $2.4 \mathrm{mmol})$ in ice bath for 15 min , then DCC ($0.35 \mathrm{~g}, 1.69 \mathrm{mmol}$) was added, stirred at $0^{\circ} \mathrm{C}$ for another 20 min and at room temperature for 2 hours, filtered and the filtrate were dried under vacuum for 30 min . Then the TFA salt of $\mathbf{1 b}$ in 3 mL of DMF was added, and adjusted the pH with DIEA to 7.0. The reaction mixture was filtered after 2 hours, then diluted with CHCl_{3} and washed with citric acid, saturated NaHCO_{3} and water successively, dried over MgSO_{4} and evaporated to give a solid. It was purified with silica gel chromatography and eluted stepwise with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \%, 2-12 \%, 15 \%$ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3}$ to afford a purple solid. $\mathrm{Rf}=0.53\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=20: 80\right)$.

DMQ-MA-Lys(DMQ-MA)-Phe-Arg-Ome 2c, DMQ-MA-Lys(DMQ-MA)-Ile-Arg -Ome 3c, DMQ-MA-Lys(DMQ-MA)-Val-Arg-Ome 4c were synthesized in a similar way as for $\mathbf{1 c}$.

Table 3 Data of elemental analysis, MS and yields for compounds $\mathbf{1 c}$ - $\mathbf{4 c}$

Compounds	C \%	H \%	$\mathrm{N} \%$	$\left[\mathrm{MH}^{+}\right]$	Yields \%
	$53.11(52.87)$	$6.21(6.02)$	$10.55(10.31)$	1063	
$\mathbf{2 c}$	$53.22(53.49)$	$6.02(6.32)$	$10.35(10.17)$	948	65
$\mathbf{3 c}$	$51.26(51.52)$	$6.46(6.23)$	$10.73(11.06)$	914	63
4c	$50.72(51.03)$	$6.34(6.21)$	$10.90(11.17)$	900	67

DNA strand cleavage experiments

To study the action of the above tripeptide-DMQ-MA conjugates on the cleavage of nucleic acids, we performed electrophoretic analysis on the nicking of supercoiled DNA by tripeptide-DMQ-MA conjugates in the presence of AH_{2} (ascorbic acid). The intensity of the bands was quantitated by the GDS 8000 computer software Gelworks 1D. Supercoiled Plasmid DNA values were corrected by a factor of 1.47 as a result of its lower staining capacity by ethidium bromide ${ }^{8}$. The experiment results show that these compounds start to cleave supercoiled DNA into open circular form in drug
concentrations as low as $4-50 \mu \mathrm{M}$ in the presence of AH_{2}, and some of them can even cleave the CCC form to OCC and linear form. The cleavage of pBR322 DNA was markedly inhibited by the addition of glycerol $(>700 \mu \mathrm{M})$, sodium benzoate ($>700 \mu \mathrm{M}$), mannitol $(>400 \mu \mathrm{M})$ and DMSO $(>700 \mu \mathrm{M})$. These studies suggest that hydroxyl radical were involved in the cleavage. Strand cleavage reaction is dependent on the peptide-DMQ-MA's concentration, which means that the degree of DNA cleavage is drug-dose-dependent. At high concentrations, the open circular DNA is further cleaved into the linear form.

Figure 1 DNA cleavage patterns of $\mathbf{1 c}$.

Incubation in PBS at $37^{\circ} \mathrm{C}$ for 10 min and at $65^{\circ} \mathrm{C}$ for 10 min . Band (a) represents the open-circular form (OCC form), band (b) represents the linear form and band (c) is the supercoiled form (CCC form). Lane 8: DNA alone; Lane 7: $\mathrm{DNA}+\mathrm{AH}_{2}(5 \mu \mathrm{M})$; Lane 6-1:5,10, 20, 50, 100, $150 \mu \mathrm{M} 1 \mathrm{c}$ and $\mathrm{AH}_{2}(5 \mu \mathrm{M})$.

The DNA cleavage patterns of $\mathbf{2 c}, \mathbf{3 c}$, and $\mathbf{4 c}$ are similar with that of $\mathbf{1 c}$. In the present work, no $\mathrm{H}_{2} \mathrm{O}_{2}$ or UV irradiation is required. Studies on the cytotoxicity of these conjugates are in progressing.

Acknowledgments

The authors sincerely thank Dr L.Sheh at Tunghai University, Taiwan for experimental assistance and valuable discussions. The authors acknowledge the support of the National Natural Science Foundation of China and Provincial Natural Foundation of Shanxi.

References

Y. F.Song, P.Yang, L.Sheh, Chin. Chem. Lett., 2000, 11, (8), 667. R. Pethig, J. A. Mclaughlin, G. A. Szent, Pro. Natl. Acad. Sci, 1983, 80, 129.
L. Sheh, US Patent, 1990, 4, 978, 783.
L. J. JR.Arnold, A. Dagan, J. Gutheil, N. O. Kaplan, Pro. Natl. Acad. Sci, 1979, 76, 3246.
L. Sheh, H.Y.Dai, Y. H. Kuan, C. J. Li, C. D. Chiang, V. Cheng, Anti-Cancer-Drug-Design, 1993, 8,237.
6. L. Sheh, H. W. Chang, C. W. Ong, S. L. Chen, C. Bailly, R. C. M.Linssen, M. J. Waring, Anti-Cancer-Drug-Design, 1995, 10, 373.
7. K. Oskar, E. K.Walter, V. L.Gert, Org Synth., 1985, 63, 160.
8. J. Bernadou, G. Pratviel, F. Bennis, M. Girardet, B. Meunier, Biochemistry, 1989, 28, 7286.

